

Nigerian Journal of Wildlife Management

Nig. J. of Wildl. Mgt., 2021, 5(2): 8 - 19

©2021 Copyright Wildlife Society of Nigeria

https://wildlifesocietyng.org/ojs/index.php/wildlifesocietyng-journal/index

ISSN 2735-9298 (PRINT) ISSN 2735-928x (ONLINE)

Population and Feeding Ecology of Mona Monkey (*Cercopithecus mona* Schreber 1774) in Finima Nature Park, Bonny Island, Rivers State, Nigeria

¹Efenakpo, O. D., ¹Okoro, K., *²Malik, R., and ³Uwatt, A.

¹Department of Forestry and Wildlife Management, University of Port Harcourt, P. M. B. 5323 Port Harcourt, Nigeria

²Biodiversity Preservation Center (BPC), Grace of God Villa, Afaha Idoro, Off Idoro Road, P.O. Box 1867, Uyo, Akwa Ibom, Nigeria

³Department of Wildlife and Range Management, Federal University of Agriculture Makurdi, Benue State, Nigeria

*Corresponding author: malikreuben@gmail.com

ABSTRACT

Mona monkeys feeding and population ecology were studied in FNP. Data were collected using field observation and review of literatures. Eleven purposely selected pre-existing trails of 2km each served as transects. Data were analyzed using descriptive statistic. A total of 117 species in 57 families were found in FNP with 18 tree species in 15 families were utilized for feeding. *Elaeis guineesis* (31.00%) was the most utilized species. A total of 432 individual Mona monkeys were sighted and the resource center/residential area (3) and access road (3) had the highest number of colonies. Similarly, the highest relative abundance and density was recorded in the resource centre/residential area (22.45%; 48.5/km²) and the airstrip (1.62%; 3.5/km²) recorded the least. Highest time budget was expended on locomotion (33.17%) while agonistic behavior (1.25%) consumed the least. The need to prioritize and protect plant species utilized and areas with higher abundance is important.

Keywords: Guenons, time budget, feeding ecology, population, Finima Nature Park

INTRODUCTION

Mona monkey (*Cercopithecus mona* Schreber 1774) is one of the twelve nonhuman primates in the world that are endemic to tropical forests of the West Africa Region (Groves, 2005; Starr, 2018). They are the most common gregarious guenons found in Africa, living in a troop up to thirty-five (Groves, 2005; Oates, 2011; Starr, 2018).

Although the species is majorly a forest inhabitant, it has also been observed to adequately adapt to heavily degraded forest, gallery forest, mangrove forest, and urban forest areas (Okekedunu *et al.*, 2014; Oshita, 2016). Mona monkeys play important role in vegetation growth through seed dispersal. Despite, their high adaptability and little or

no predators in the wild, their population has dwindled due to poaching and anthropogenic activities which have induced changes in ecological balance (Bukie *et al.*, 2016; Owolabi *et al.*, 2019).

Mona monkey is one of the most endangered species of non-human primates in the tropics despite the International Union Conservation of Nature (IUCN) listing it as Near Threatened (Ogunyebi et al., 2018; IUCN, 2019). In Nigeria, it is a protected species under the Nigeria Endangered **Species** Decree Number 11 of 1985 nevertheless; the population is rapidly declining due to hunting pressure, increasing wildlife trade, and habitat loss (Tooze and Baker, 2008; Okekedunu et al., 2014; Bukie et al., 2016). The species is mostly conserved and protected only in protected areas and few communities with the traditional conservation method (TCM).

Food and feeding habits are an important component of wildlife biology, population dynamics, reproduction, survival, habitat selection, and social behaviour (Owolabi et al., 2019). The food selection pattern of primates is essential to understanding their behavioral pattern and spatial distribution. Understanding the feeding ecology of an organism in an area so as to gather information for environmental quality and monitory is scientifically necessary and important to conservation (Nwosu and Iwu, 2011). Olaleru et al. (2020) had opined that primates living in private reserves may have nutritional challenges with long-term survival implications. Consequently, it is pertinent to study Cercopithecus mona in such reserves.

Available data on *Cercopithecus mona* population and feeding ecology in West Africa is relatively scanty especially in the southern part of Nigeria, more specifically at Finima Nature Park (FNP). This study examine the plant-feeding materials of *Cercopithecus mona*, determine the spatial distribution of the species, estimate the relative abundance of the species, and assess the time budget of the species in the study area. The result of the study will form a baseline survey for other similar surveys and help prioritize Mona monkey's conservation efforts.

MATERIALS AND METHODS Study Area

The study was conducted at Finima Nature Park (FNP) Bonny Island, Rivers State Nigeria, an area covering approximately 1000ha (Akani and Luiselli, 2010; Finima Nature Park **Biodiversity** Assessment (FNPBA), 2019). The Nature Park lies between latitude 4° 23′7″ N to 4°24′ 7″ N and longitude 7° 8′ 5″ E to 7°11′ 30″ E (Figure 1) (FNPBA, 2019). The park was established by Nigeria Liquefied Natural Gas (NLNG) in 1999 to protect the mangrove vegetation and its rich fauna population (FNPBA, 2019). FNP is characterized by an equatorial climate, with May to October wet season and November to April dry season. It has an average temperature of 26°C - 32°C (Akani and Luiselli, 2010). Every year, the park experiences an average rainfall of 3200 mm and the climax of rains is between July and September. The relative humidity of FNP is 65% during the dry season and 98% during the wet season (Akani and Luiselli, 2010).

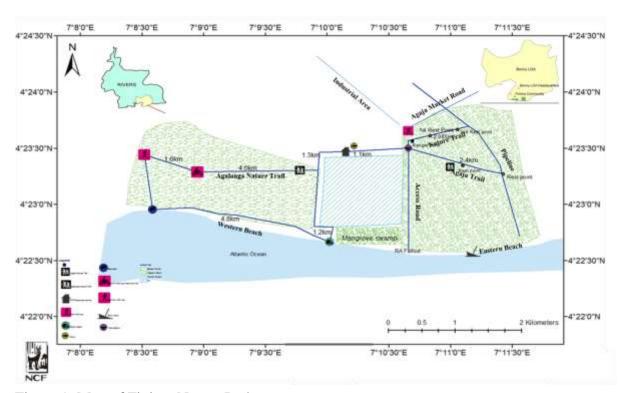


Figure 1: Map of Finima Nature Park Source: Finima Nature Park, 2019.

Data Collection

The study area was stratified into 5 major habitats types on the bases of vegetation and land use; mangrove forest, freshwater swamp, coastal area, industrial layout, and residential area. Data were collected using onset field observation and literatures on plant diversity in FNP. Line transects method was used to collect data because it's the most efficient in terms of data collection per unit effort (FNPBA, 2019). The survey involved walking a total of 11 selected pre-existing with each transect measuring approximately 2km with a pair of Celestron 8 X 42 Binoculars. The line transects represent 5 major habitat types; mangrove forest, freshwater swamp, coastal area, industrial layout, and residential area. All monkeys sighted Mona directly and indirectly were recorded. The sampling covered 5 days in the wet season (September 2-6, 2019). Each individual sighted was assigned 2mins to avoid wrong readings due to eye-catching behavior. Sighting locations (coordinates) of the species were recorded using a Garmin eTrex 30X GPS. A review of the park data and publication on plant diversity of the FNP was done to complement data obtained through the field survey.

Data Analysis

Data collected were analyzed on the Statistical Package for Social Sciences (SPSS version 22) using descriptive statistics with results presented in a pie chart, bar chart, and frequency tables.

Species relative abundance =

Species abundance X 100

Total abundance

Density = number of individuals/ transects' distance

The spatial distribution was determined by the GPS coordinate of each colony.

RESULTS

Plant Species Checklist and Parts Utilized by Mona Monkey in the Study Area

The results of the plant species checklist, parts utilized, and the percentage of utilization in the study area is presented in Table 1 and Figure 2. Table 1 shows a total of 117 species of plants belonging to 57 families are found in the study area and 18 tree species belonging to 15 families were observed to be utilized for feeding by Mona

monkey in the study area. The plant parts utilized for feeding vary from leaves to fruits. Figure 2 shows *Elaeis guineesis was* the most utilized species (31.00%) followed by *Crysoballanus Icacao* (14.00%) and *Cantium vulgaris* (13.00%) and the least utilized species were *Cleistopholis patens* (1.00%), *Chrysobalanus icaco* (1.00%), *Klainedoxa gabonensis* (1.00%), *Mangifera indica* (1.00%), *Terminalia catappa* (1.00%), *Dacryodes edulis* (1.00%).

Table 1: Plants species and parts utilized by mona monkey in the study area

S/N	Family	Plant species	Common Names	Parts	Plant Form
1	Acanthaceae	A systasia giagntia		Utilized	
		Asystasia gigantic			
2	Agavaceae	Dracaena arborea			
3		Dracaena sp.			
4	Amaranthaceae	Alternanthera sessilis	G 1		T.
5	Anacardiaceae	*Anacardium occidentale	Cashew	Fruits	Trees
6		*Mangifera indica	Mango	Fruits	Trees
7	Annonaceae	*Cleistopholis patens	Cleistopholis	Leaves	Trees
8	"	Monodora myristica			
9	"	*Xylophia aethiopia	Negro Pepper	Fruits	Trees
10	Apiaceae	Cleome asiatica			
11	Apocynaceae	Alstonia boonei			
12	"	Funtumia Africana			
13	"	Landolphia dulcis			
14	"	Landolphia owariensis			
15	"	Rauvolfia caffra			
16	"	Rauvolfia vomitoria			
17	"	Strophanthus preussii			
18	Araceae	Aglaonema sp			
19	"	Colocasia bicolor			
20	"	Colocasia esculenta			
21	"	Culcasia scandens			
22	"	Cyrtosperma senegalense			
23	Arecaceae	Calamus deeratus			
24	"	*Elaeis guineensis	Palm Tree	Fruits	Trees
25	"	Laccosperma secundiflorum			
26	"	Oncocalamus mannii			
27	"	Raphia hookeri			
28	Asclepiadaceae	Secamone afzelii			
29	Asteraceae	Chromolaena odorata			

30	"	Eclipta prostrate			
31	"	Emilia sonchifolia			
32	"	Vernonia amygdalina			
33	Athyriaceae	Diplazium sammatii			
34	Avicenniaceae	Avicennia germinans			
35	Bignoniaceae	Newbouldia laevis			
36	Burseraceae	*Dacryodes edulis	Bush Pear	Fruits	Trees
37	Cannabaceae	Trema orientalis			
38	Chrysobalanceae	*Chrysobalanus icaco	Coco Plum	Fruits	Trees
39	Clusiaceae	Symphonia globulifera.			
40	Combretaceae	*Terminalia catappa	Almond	Fruits	Trees
41	Commelinaceae	Commelina difussa			
42	"	Palisota hirsute			
43	"	Vernonia conferta			
44	Costaceae	Costus afer			
45	Cucurbitaceae	Momordica charantia			
46	Dilleniaceae	Tetracera alnifolia			
47	Euphorbiaceae	Alchornea cordifolia			
48	"	*Anthostema aubryanum	Baill	Leaves	Trees
49	"	Macaranga barterii			
50	"	Manihot esculenta			
51	"	Phyllanthus niruri			
52	"	Phyllantus amarus			
53	"	Spondianthus preussii			
54	"	Uapaca spp.			
55	Fabaceae	Baphia nitida			
56	"	Canavalia rosea			
57	"	Carthormion altissimum			
58	"	Crotalaria retusa			
59	"	*Erythrophleum ivorense	Sasswood	Leaves	Trees
60	"	Lonchocarpus cyanescens			
61	"	Pentaclethra macrophylla			
62	"	Stylosanthes spp.			
63	Gentianaceae	Anthocleista vogelii			
64	Guttiferae	Pentadesma butyraceae			
65	Humiriaceae	Sacoglottis gabonensis			
66	Hypericaceae	Harungana madagascariensis			
67	Icacinaceae	Lasienthera Africana			
68	Irvingiaceae	*Irvingia gabonensis	Dika Nut		
69	"	*Irvingia grandifolia	Bitter Mango	Fruits	Trees
70	"	*Klainedoxa gabonensis	Bush Mango	Seeds	Trees
71	Lamiaceae	*Catnip vulgaris		Fruits	Trees
72	"	Ocimum cannon			

73	"	Ocimum gratissimum			
74	II .	Solenostemon monostachyus			
75	n .	Gmelina arborea			
76	"	*Tectonia grandis	Teak		
77	Loranthaceae	Tapinanthus spp.			
78	Lycopodiaceae	Lycopodium spp.			
79	Malvaceae	Cola pachycarpa			
80	"	Urena lobata			
81	Marantaceae	Marantochloa purpurea			
82	Melastomataceae	Dissotis erecta			
83	"	Dissotis rotundifolia			
84	Moraceae	*Ficus spp	Fig	Fruits	Trees
85	Myristicaceae	Pycnanthus angolensis			
86	Nephrolepidaceae	Nephrolepis biserrata			
87	"	Nephrolepis exaltata			
88	Nephthytideae	Anchomanious difformis			
89	Ochnaceae	*Lophira alata	Ironwood Tree	Seeds	Trees
90	"	Ouratea callophylla			
91	"	Ouratea spp.			
92	Pandanaceae	Pandanus candelabrum			
93	Passifloraceae	*Barteria nigritana		Leaves	Trees
94	Phytolaccaceae	Petiveria Alliaceae			
95	Piperaceae	Piper guineensis			
96	Polygalaceae	Carpolobia spp.			
97	Primulaceae	Ardisia spp.			
98	Rubiaceae	Borreria verticillate			
99	"	Diodia scandens			
100	"	Hallea ledermannii			
101	"	Massularia acuminate			
102	"	Mitragyna ciliate			
103	"	Mitragyna inermis			
104	"	*Nauclea didderichii	Opepe	Leaves	Trees
105	"	Pauridiantha floribunda			
106	"	Psydrax subcordata			
107	"	Rothmannia whitfieldii			
108	Selaginellaceae	Selaginella spp.			
109	Simaroubaceae	Pierrreodendron africanum			
110	Smilacaceae	Smilax klaussiana			
111	"	Smilax spp.			
112	Sterculiaceae	Sterculia tragacantha			
113	Thelypteridaceae	Cyclosorus afer			
114	Urticaceae	Laportea spp			
115	"	*Musanga cecropioides	Umbrella Tree	Fruits	Trees

*Plants that are utilized by Mona monkey at FNP

Source: Field Survey, 2019.

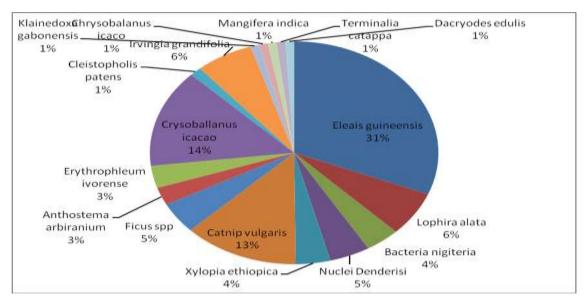


Figure 2: Percentage of Utilization of the Various Tree Species.

Source: Field Survey, 2019.

The Spatial Distribution of Cercopithecus mona in the Study Area

The results of the spatial distribution of Mona monkeys in the study area are presented in Figure 3. The figure shows that the resource centre/residential area transect

(3) and access road (3) had the highest number of colonies sighted, and the least was found in the airstrip transect (1), while the western coastline (0) and eastern coastline (0) had no colonies of mona monkeys.

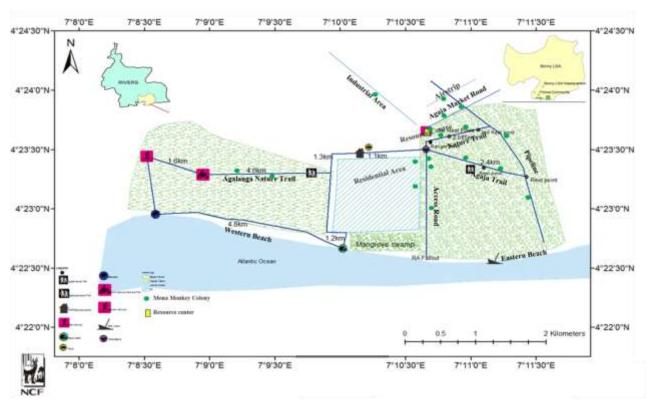


Figure 3: Spatial distribution of *Cercopithecus mona* in the Study Area Source: Field Survey, 2019.

Relative Abundance and density of Cercopithecus mona in the Study Area

The results on the relative abundance and density of the species in the study area are shown in Table 2. The table 2 shows total of 432 individuals were observed and the highest relative abundance was recorded in the resource centre/residential area transect (22.45%) as shown in Table 2, followed by access road (21.30%), and nature trail

(17.36%),while the airstrip transects recorded the (1.62%)least relative abundance. In addition, western (0.00%) and eastern coastal areas (0.00%) had no record of Mona monkeys. More also, the table resource centre/residential shows area transect (48.5/km²) had the highest Mona monkey density and the two coastal area transects had none.

Table 2: Relative abundance and density of mona monkey in FNP

s/n		Colonies	N <u>o</u>	Relative	Percentage	Density/km ²
	Transects		Individuals	Abundance	%	
1	Resource					
	Centre/Residential area	4	97	0.22	22.45	48.5
2	Nature Trail	3	75	0.17	17.36	37.5
3	Agalanga Nature Trail	2	52	0.12	12.04	26
4	Western Coastal Area	0	0	0.00	0.00	0
5	Eastern Coastal Area	0	0	0.00	0.00	0
6	Pipeline OGGT	1	29	0.07	6.71	14.5
7	Agaja Nature Trail	2	42	0.10	9.72	21
8	Airstrip	0	7	0.02	1.62	3.5
9	Agaja Market Transect	1	22	0.05	5.09	11
10	Industrial Area	1	16	0.04	3.70	8
11	Access Road	4	92	0.21	21.30	46
	Total	18	432			216

Source: Field Survey, 2019.

Time Budget of Mona Monkeys in the Study Area

The results of the time budget of the species in the study are presented in Table 3. The table shows 7 activities which include; locomotion, feeding, resting, grooming, playing, agonistic behavior, and vocalization were recorded. The highest period was expended on locomotion (33.13%), followed by feeding (26.88%), while agonistic behavior (1.25%) consumed the least of the time spent by the species.

Table 3: Mona monkeys' activities and average duration expended per day in FNP

			1 1
S/N	Activities	Period Expended (hr)	Period Expended (%)
1	Locomotion	5.3	33.13
2	Feeding	4.3	26.88
3	Resting	3.2	20.00
4	Playing	1.6	10.00
5	Grooming	1.1	6.88
6	Agonistic	0.2	1.25
7	Vocalization	0.3	1.88

Source: Field Survey, 2019.

DISCUSSION

The fruit pulp has been described as an excellent carbohydrate source for primates according to the survey of Lambert (2017). Our survey recorded fruits as the most frequent plant parts utilized for feeding by

Cercopithecus mona in FNP this result is similar to Olareru et al. (2020) which recorded fruits and seeds as the main diet of Mona monkeys in a strict private nature reserve. Four species of trees (Elaeis guineensis, Xylopia aethiopia, Ficus ingens,

and *Chrysobalanus icaco*) identified in this study has been previously recorded Olareru *et al.* (2020). *Elaeis guineensis* was the most utilized species in the park and this may be connected to the fact that most of the plant materials fed on have fruiting seasonality while some such as palm trees are available all year round as indicated in the study by Ejidike and Salawu (2009).

The distribution of *Cercopithecus mona* in the park is mainly driven by food sources such as fruit trees and areas with human habituation had the highest abundance which correlates with availability of leftover food this result is similar to the findings of Matsuda (2007). The transects close to the residential areas recorded more species, while on the contrary, the western and eastern coastlines recorded zero sightings which may be attributed to the lack of fruit trees and adequate vegetation cover.

Cercopithecus mona was recorded to be more in the eastern part of the park which had more fruit trees and more importantly Elaeis guineensis was more abundant in the eastern part and this species has been recorded to be the most utilized species of the guenon in the park. Troops were also observed to be overlapping, which might be as a result of the clustered nature of their home ranges and the clustered nature of their food source. Troops were observed to roost not far from their feeding points as well. The relative abundance of the species is closely related to its distribution and areas with a higher number of sighted individuals had a higher relative abundance. The resource centre/residential area transect had the highest relative abundance and the coastline and industrial areas recorded the least relative abundance, this is as a result of the abundance of fruit trees close to the resource centre and residential area.

Among the recorded activities, locomotion

was obtained to take the highest period of the day for the guenon while vocalization and agonistic behavior consumed the least time. Similar records were obtained in the study carried out by Okekedun *et al.* (2014) this is as a result of the arboreal nature of the species which rely on fruit trees for most of their food source. As an arboreal species, acquiring food required movement on treetops thereby increasing the need for locomotion agonistic behavior and vocalization were minimal during the study, and no mating was observed.

CONCLUSION

The species Elaeis guineensis was utilized more than the other recorded species in the park due to its year-round availability. On observation, the troops tend not to roost far from their foraging points due to the clustered nature of fruit trees, and the population was more of juveniles which indicate an increase in population over the next couple of years. This can be attributed to the lack of predators within the park. The species were abundantly distributed around the residential areas which had more fruit trees and this also implies that the species have adapted to the noise from human activities and are now accustomed to tourist sightings. However, the fast-changing coastal topography and the anthropogenic activities have resulted in the unavailability of the species along with the coastal areas. The species have a similar time budget as its counterparts in other populations in West Africa and although they boast a large juvenile population vocalization is still minimal. A longer period of observation is recommended to achieve robust data of the feeding as per seasonality. Afforestation of fruit species around the park is recommended to ensure a more even distribution of the species in the park. Further study on the species sexual dimorphism would help in determining the population structure of the troops.

ACKNOWLEDGEMENTS

We are grateful to the management of the Nigeria Conservation Foundation (NCF) for the research permit and boat logistics support. Special thanks to the FNP Director Mr. Dagogo Brown, Shittu, U. A., and forest rangers (Mr. Ugbana Clement Uwubong and Mrs. Rose Idongisit) for their support, hospitality, and field assistance, also to Dr. B. A. Oyebade the Head of the Department of Forestry and Wildlife Management University of Port Harcourt for initiating the research request permit.

REFERENCES

- Akani, G. C. & Luiselli, L. M. (2010).

 Aspects of community ecology of amphibians and reptiles at Bonny Island (Nigeria), an area of priority relevance for the petrochemical industry. Blackwell Publishing Ltd, Afr. J. Ecol. Vol 48(4):939-948
- Bukie, J. O., Nchor, A. A., Ebu, V. T. & Mgbang, E. U. (2016). Population Density of the Mona Monkeys (*Cercopithecus mona, Schreber, 1774*) in Afi Mountain Wildlife Sanctuary, Cross River State, Nigeria. *Agriculture, Forestry, and Fisheries*. Vol. 5, No. 6, 2016, pp. 261-265. DOI: 10.11648/j.aff.20160506.17
- Ejidike, B. N. & Salawu, A. (2009). Feed and feeding habits of Mona monkey (*Cercopithecus mona*) in Ayede/Isan forest reserve, Ekiti State. *Journal of Research in Forestry, Wildlife and Environment* 1: 56-59.
- Finima Nature Park (FNP), (2019). Finima Nature Park,

- www.finimanaturepark.org retrieved 24/02/2019
- Finima Nature Park Biodiversity Assessment (FNPBA) (2019). Biodiversity Assessment of Finima Nature Park (FNP) Bonny Island, Rivers State, Nigeria, 86p
- Groves, C. P. (2005). *Mammal Species of the World* (3rd ed.). In: Wilson, D. E.; Reeder, D. M, eds. Baltimore: Johns Hopkins University Press. p. 157. OCLC 62265494. ISBN 0-801-88221-4.
- IUCN (2019). The IUCN Red List of Threatened Species. Version 2019-2 https://www.iucnredlist.org/species/ 4222/10677731
- Lambert, J. E. (2007). Primate nutritional ecology. In *Primates in Perspective*. C.J. Campbell, A. Fuentes, K.C. Mackinnon, M. Panger & S.K. Bearder, eds. Oxford University Press, New York. Pp. 482-495.
- Matsuda, G. R. (2007). Behavior and ecology of the mona monkey in the seasonally dry Lama Forest, Republic of Benin. Ph.D. thesis, City University of New York, New York.
- Nwosu, C. & Iwu, C. (2011) A Comparative study of the diversity of species of butterflies in protected unprotected habitats of Okuno, Ogbaku forest reserve in Mbatoli LGA, Imo State, Nigeria, Journal of Environmental Issues and Agriculture in Developing Countries, vol 3, no. 1, pp, 129-136,2011
- Oates, J. F. (2011). Primates of West Africa. A field guide and Natural History. Panamericana Formase impress, S. A., Bogota, Columbia. Pp.154-334.
- Ogunyebi, A. L., Omoyajowo, K. O.,

- Shodunmola, G. E. & Fingesi, T. S. Survival instinct (2018).conservation strategies of Mona monkey in the University of Lagos community, Nigeria, In Akinwole, A.O., Adekunle, V. A. J., Ogunsanwo, O. Y., (eds.) Emerging in Sustainable Forest Management: **Experiences** and Lessons for Nigeria. Proceedings of the 40th Annual Conference of the Forestry Association of Nigeria, held in Lagos, Lagos state, $12^{th} - 16^{th}$ March 2018. 661-669 pp
- Okekedunu J. O, Ogunjemite B. G., Adeyemo, I. A., & Olaniyi, O. E. (2014). Daily activity budget of Mona monkey (*Cercopithecus mona* Schreber 1774) in Ibodi Monkey Forest, Osun State, Nigeria 2014. *FUTA Journal of Research in Sciences*, (2):218 227
- Olaleru, F., Onadeko, A. B., Ogunjemite, B. G., Egonmwan, R. I. & Lambert, J. E. (2020) Diet and Nutritional Profile of the Mona Monkey (*Cercopithecus mona*, Schreber, 1774) in Okomu National Park, Nigeria: Preliminary Study, *African Primates*, 14: 1-10
- Oshita, B. J., Atim, N. A., Tawo, E. V., & Ubua, M. E. (2016). Population density of the mona monkeys (*Cercopithecus mona*, Schreber, 1774) in Afi Mountain Wildlife Sanctuary, Cross River State,

- Nigeria. *Agriculture, Forestry and Fisheries*, 5(6): 261-265.
- Owolabi, B. A, Adewumi, A. A., Ogunjimi A A, Orimaye I. F., Alake B. O., Ajayi, I. M, Adevemi, A. A, & Olakojo, S. A. (2019). Food choice of Mona monkey (Cercopithecus mona) in College of agriculture, Osun state university. In: Adeyanju, Orimaya, J. O., Coker, O. M., Alarape, A. A., Ayodele, I. A., Omonona, A. O., Ojo, S. O., Ajani, F., Ogunjinmi, A. A. (eds.) Wildlife Management Contribution to the Diversifying Economy. Proceedings of the 3rd Wildlife Society of Nigeria (WISON) Conference held Ibadan, $16^{th} - 19^{th}$ September 2019. Pp.284-291
- Starr, E. (2018). Mona monkey (*Cercopithecus mona*), New England Primate
 - Conservancyhttps://www.neprimateconservancy.org/mona-monkey.html, accessed 6/5/2020
- Tooze, Z. J. & Baker, L. R. (2008). Reintroduction of mona monkeys to supplement depleted population in forest in Southeast community Nigeria. In: Soorae, P. S. (ed.). Global Re-introduction Perspectives: Re-introduction Casestudies from Around the Globe. **IUCN/SSC** Re-introduction Specialist Group, Abu Dhabi, United 207-212. Arab Emirate. pp.